TRACKING INFORMATION

Project Number: 1264 – T-36

Project ID: 9001-769-1264

Project Title: SWG - Landscape-level in-stream habitat mapping: "Side Scan Sonar"

Project Director: Jennifer Bock

Project Director's Address: Florida Fish and Wildlife Conservation Commission

Fish and Wildlife Research Institute 620 South Meridian Street, Tallahassee, FL 32399-1600

Project Assistants: Cameron Bodine; Reuben Smit

Dates: Final Project Report

Date Submitted: May 1, 2017

ABSTRACT

Side scan sonar for benthic habitat mapping is an efficient, low-cost approach for mapping habitat features in navigable rivers and streams. It provides a means to create high resolution, spatially detailed maps of continuous, instream habitat across broad aquatic landscapes. The sub-basins selected for this project include: Lower Choctawhatchee, Lower Ochlockonee, Withlacoochee, Peace, and Lower Suwannee. The habitat maps produced will provide valuable information that can be used to identify critical habitat for numerous species. The benthic habitat maps will provide the baseline data needed for instream habitat monitoring. These maps, depicting substrate and large woody debris, will provide a measure of location and amount of various habitat types for aquatic species. These maps will also identify potential areas for restoration. Additionally, mapping pre- and post-restoration efforts can aid in monitoring the outcomes of those efforts.

Approximately 693 river kilometers (RKM) have been scanned across the five river basins including image rectification. All navigable sections of the Peace, Withlacoochee, Choctawhatchee Suwannee and the Ochlockonee Rivers have been completely mapped. Accuracy assessments have been completed for the Peace, Withlacoochee, Choctawhatchee Ochlockonee, and the Suwannee Rivers.

ACKNOWLEDGMENTS

The authors would like to thank the Florida Fish and Wildlife Conservation Commission's program, Florida's Wildlife Legacy Initiative, and the U.S. Fish and Wildlife Service's State Wildlife Grants program grant number 1264 for funding this work.

Contents

Tracking Information
Abstracti
Acknowledgmentsi
Introduction1
Project Objectives
Methods
Study Areas2
Lower Choctawhatchee River Basin.—2
Lower Ochlockonee River Basin.—
Peace River Basin.—
Withlacoochee River Basin.—7
Data Collection
Processing
Development of Classification System
Digitizing Habitat Features
Accuracy Assessment9
Progress
Overview9
Peace
Data Collection.—9
Processing.—10
Mapping.—
Accuracy Assessment. —
Withlacoochee
Data Collection.—
Processing.—11
Mapping. —
Accuracy Assessment. —
Lower Choctawhatchee
Data Collection.—
Processing.—
Mapping.—
Accuracy Assessment. —

Lower Suwannee	14
Data Collection.—	14
Processing.—	14
Mapping.—	14
Accuracy Assessment. —	15
Lower Ochlockonee	16
Data Collection.—	16
Processing.—	16
Mapping.—	16
Accuracy Assessment. —	16
Literature Cited	
Appendices	
A) Survey Summaries	19
Lower Choctawhatchee River Survey Summary.—	19
Lower Ochlockonee River Survey Summary.—	20
Lower Ochlockonee River Survey Summary Continued.—	21
	21
Peace River Survey Summary.—	22
Lower Suwannee River Survey Summary.—	23
Lower Suwannee River Survey Summary.—	24
Withlacoochee River Survey Summary.—	25
Withlacoochee River Survey Summary Continued.—	26
B) Classification System Schematic	27
C) Classification List	
D) Classification Definitions	
F) SonarTRX X64 Pro Procedure	
F) Classification Summary	53

INTRODUCTION

Although the practice of landscape ecology has flourished using spatial technologies to reveal patterns and processes at broad scales in terrestrial habitats, the investigation of riverine landscapes has lagged behind (Wiens 2002), perhaps for want of analogous tools and techniques. Landscape level habitat data are extremely valuable in research, management and monitoring of aquatic systems. A multiscale landscape perspective is necessary to enable ecological investigations at scales relevant to the life history of stream fishes (Fausch et al. 2002; Lowe et al. 2006), and to identify, protect, restore and enhance fish and aquatic invertebrate habitat. In the past, the characterization of in-stream habitat at the landscape scale has been both difficult and costly. Low-cost side-scan sonar (SSS) offers an alternative to airborne remote sensing techniques, such as LIDAR and thermal infrared systems, which are expensive and are significantly impacted by depth and turbidity (Kaeser and Litts 2010).

Side-scan sonar has been used for decades to detect and map benthic features of marine and deep freshwater systems (Newton and Stefanon 1975; Fish and Carr 1990, 2001; Prada et al. 2008). Traditional SSS is, however, expensive and typically involves towing an underwater sensor (i.e., towfish), limiting its use in relatively shallow freshwater systems. In 2005 Humminbird® released the 900-series Side Imaging (SI) system, an inexpensive (~\$2,000) SSS device. The SI system employs a small, boat-mounted transducer, enabling surveys in shallow, rocky streams. This device is capable of producing very high resolution (<10 cm) imagery revealing substrate, large woody debris, and depth—all critical components of in-stream habitat. Mapping with SSS provides a comparable and effective substitute for the labor intensive, traditional field assessment of several key habitat variables. Mapping with SSS is not only more efficient, but the information generated is geospatially referenced at a level of detail that is difficult, if not impossible to achieve with traditional field collection methods. By providing a means to visualize wholechannel, underwater features, SSS mapping overcomes limitations of traditional approaches in deep, turbid, and/or non-wadeable systems. From a practical standpoint, this technique can be performed using software readily available to researchers and managers with a limited amount of training and expertise. Within the GIS environment, information contained in these maps can be integrated with a wide variety of data layers providing new ways to examine patterns and processes occurring in aquatic landscapes. Applications of SSS habitat maps include studies of habitat-organism relationships, the identification or prediction of critical habitat, the association of land cover and in-stream habitat, and the monitoring of change over time (Kaeser and Litts 2010).

In recent years the use of SSS for mapping elements of instream habitat, examining patterns of association between aquatic organisms and habitat, and assessing habitat change over time has been increasing. Side scan sonar has been used to explore habitat selection of female Barbour's map turtle in a Southwest GA creek (Sterrett 2009), study habitat relationships between three bass species in the upper Flint River (Gocklowski et al. 2013), and is being used to assess changes in substrate deposition following a 10-year flood event, model the distribution and abundance of mussels in the Apalachicola River, develop and evaluate a sonar-based approach to monitoring distribution and abundance of adult Gulf sturgeon, and evaluate alligator snapping turtle habitat use in the Suwannee River (A. Kaeser, USFWS pers. comm.). The Florida Fish and Wildlife Conservation Commission (FWC) has successfully used SSS mapping to identify substrate preference for shoal bass spawning sites, as well as the availability of spawning habitat within the Chipola River (Bitz et al, 2015.).

This project aims to map all navigable waterways (rivers and streams) in five selected sub-basins. Low-cost sonar habitat mapping has been employed to map extensive river reaches (>100 km), but not to

map entire sub-basins. Doing so would enable the study of patterns and processes associated with physical habitat at a scale relevant to watershed planning and monitoring. Sub-basins were selected from the Florida Wildlife Legacy Initiative (FWLI) prioritized list; two FWLI priority preservation sub-basins (Lower Choctawhatchee and Lower Ochlocknee), two FWLI priority enhancement sub-basins (Withlacoochee and Peace), and an additional priority sub-basin for partners/stakeholders (Lower Suwannee) were selected. Physical habitat layers can be integrated with existing biological data to identify and quantify the distribution and extent of various habitat types for aquatic species. Habitat mapping will provide valuable information that can be used to identify critical habitat for numerous Species of Greatest Conservation Need (SGCN) (FWLI Species monitoring goal). The benthic maps will provide the baseline/reference data needed for monitoring habitat change over time (FWLI Habitat monitoring goal) within and across the sub-basins. With side scan sonar data available at the sub-basin scale, the FWC will be able to combine this data with existing land use/land cover data to study how land use throughout the sub-basin affects issues such as sedimentation and cover availability in the form of large woody debris. Sonar-based habitat maps will also be used in conjunction with staff knowledge of areas with a high likelihood of impact (such as unfenced pastures and unpaved stream crossings, particularly in areas that show heavy sedimentation (FWLI Freshwater goal)). Pre and post-restoration mapping can aid in monitoring the outcomes of restoration efforts. For State Wildlife Grant (SWG) funded restoration projects, these maps will aid in fulfilling the requirement of monitoring the effectiveness of how SWG funds are being allocated.

Project Objectives

The ultimate objective of this study is to develop a comprehensive in-stream habitat database composed of multiple physical habitat layers from navigable river/stream waterways within 4 - 5 HUC 8 sub-basins, depending on water levels. The following three steps are involved in a sonar habitat mapping project:

- 1. Sonar surveys are conducted during appropriate stream conditions to gather imagery and coordinate data.
- 2. Classified maps of physical habitat features are developed using ArcGIS for substrate, large woody debris, channel margins, depth, and other features of interest to be determined by the project committee (e.g., mesohabitats, riparian disturbance).
- 3. Accuracy assessments are conducted to evaluate map products.

Achievement of this objective will result in a validated GIS database containing detailed, seamless habitat information for approximately 1,140 river kilometers in 5 priority sub-basins.

METHODS

Study Areas

Lower Choctawhatchee River Basin.—

The USGS divides the Choctawhatchee River Basin into two HUC 8s, the Upper Choctawhatchee (in Alabama) and Lower Choctawhatchee River basins. The Lower Choctawhatchee River Basin covers an area of 995,139 acres (402,718 ha), approximately 91 % of which is in Florida's Panhandle and 9 % in southern Alabama. In Florida, the Lower Choctawhatchee River flows through two distinct physiographic regions: the Marianna Lowlands and the Gulf Coastal Lowlands, but cuts between the Western and Northern Highlands (FDEP 2006b). Forests, Agriculture and Swamps are the major land-cover types throughout the basin (Figure 5G). The Choctawhatchee River discharges an average of 7,198 cfs (204 m₃/sec) to the Choctawhatchee Bay (NWFWMD 1996). Classified as a Large Alluvial Stream, the Choctawhatchee River has a large floodplain, seasonal flooding and heavy sediment loads (FDEP 2006b). The basin contains 13 low magnitude springs, including Morrison, Washington Blue, Potter, Vortex and Ponce de Leon springs, contributing 160 cfs (4.5 m₃/sec) to the Choctawhatchee River (Barrios 2005). Many lakes important for recreation and native species occur throughout the basin, including Lake DeFuniak, Pate Lake, Juniper Lake, Lake Victor, Lucas Lake and Hicks Lake. Softwater Streams and Seepage/Steephead Streams occur in the basin as well. Holmes Creek, the Choctawhatchee River's major tributary, is a spring-fed Calcareous Stream, receiving water from the Sandhill Lake aquifer recharge area in Washington County (FDEP 2006b).

Ten state and one federally listed freshwater obligate SGCN occur within the basin, including four birds, two turtles, one salamander, one frog and two fish (notably the Gulf sturgeon). Though the Lower Choctawhatchee River Basin is relatively undeveloped, a portion of the landscape is classified as Disturbed/Transitional (Figure 5G). Also, the highly permeable karst topography makes the basin vulnerable to decreased water quality and quantity (Barrios 2005). Several partners have made an effort to improve or conserve the water and land resources in the Lower Choctawhatchee River Basin. Examples include the Choctawhatchee Basin Alliance's water quality monitoring and education programs; the FDEP's Watershed Restoration Program; the NWFWMD SWIM Plan; and the 94,681 acres (38,316 ha) of conservation land in the basin (FNAI 2011b). Five counties occur within the basin (Bay, Washington, Jackson, Holmes and Walton). The conservation of the basin's

land and water resources is managed by the FWC's Northwest Region, the FDEP's Northwest District and the NWFWMD.

The USGS divides the Ochlockonee River Basin into two HUC 8s: the Upper Ochlockonee (in Georgia) and the Lower Ochlockonee River basins. The Lower Ochlockonee River Basin covers an area of 994,445 acres (402,438 ha), approximately 84 % of which is in Florida's Panhandle and 16 % in southwest Georgia. In Florida, the Lower Ochlockonee River flows through two distinct physiographic regions: the Tallahassee Hills and the Gulf Coastal Lowlands (FDEP 2001). Forests and Swamps are the major land cover types throughout the basin (Figure 5H). After receiving increased flow from the Lake Talquin Dam, the Ochlockonee River discharges approximately 2,500 cfs (71 m3/sec) to the Ochlockonee Bay (FDEP 2001). The Ochlockonee River and most of its tributaries are classified as Alluvial Streams, but it also receives input from several Softwater, Seepage/Steephead and Coastal Tidal Streams (FDEP 2001). The basin also contains several large lakes important for recreation and species diversity, including the Lake Talquin Reservoir, Lake Jackson and Lake Iomania (FDEP 2001).

Eleven state and three federally listed freshwater obligate SGCN occur within the basin, including five birds, two turtles, two fish (the Gulf sturgeon and Suwannee bass) and two mussels. Flow of the Ochlockonee River has been altered by the Lake Talquin Reservoir was impounded in 1929 for hydroelectric power generation but is mostly used for recreation now (FDEP 2001). The large and small lakes in the basin are vulnerable to contamination from stormwater in urban areas (FDEP 2001). Several partners have made an effort to improve or conserve the water and land resources in the Lower Ochlockonee River Basin. Examples include the City of Tallahassee's water quality improvement and education programs; the interagency (NWFWMD, FDEP, FWC and Leon County) Lake Jackson Restoration Project; the FDEP's Watershed Restoration Program; the NWFWMD SWIM Plan; and the 317,492 acres (128,484 ha) of conservation land in the basin (FNAI 2011b). Five counties occur within the basin (Franklin, Wakulla, Liberty, Leon and Gadsden). The conservation of the basin's land and water resources is managed by the FWC's Northwest Region, the FDEP's Northwest District and the NWFWMD.

Peace River Basin.—

The Peace River Basin covers an area of 1,498,002 acres (606,220 ha) in West Central Florida from Winter Haven to Punta Gorda. The Peace River flows south from the Green Swamp to Charlotte Harbor, Florida's second largest estuary (FDEP 2003b). Three physiographic regions are contained within the basin: the Polk Upland, the DeSoto Plain and the Gulf Coastal Lowlands (Southwest Florida Water Management District [SWFWMD] 2002). The basin contains some of Florida's best remaining Dry Prairie habitats in the state (Figure 5M and FDEP 2003b). Classified as a Softwater Stream in its upper reaches, the Peace River receives much of its water from rainfall. Innumerable lakes important for recreation and species diversity occur in the upper part of the basin, such as lakes Ariana, Hamilton, Hancock and Parker. As it flows south, the floodplain widens, wetlands increase and it transitions to a Coastal Tidal River. The Peace River discharges an average of 2,010 cfs (57 m3 /sec) to Charlotte Harbor (Hammet 1990). Six state listed and one federally listed freshwater obligate SGCN birds (notably the snail kite) occur within the basin. The Peace River Basin has undergone many changes in landscape since the 1900s from urban development, agriculture and phosphate mining, which have all led to decreased water levels and degraded water quality in the Peace River and its tributaries (FDEP 2003b). Several partners have made an effort to improve or conserve the water and land resources in the Peace River Basin. Examples include the Charlotte Harbor National Estuary Program's conservation and restoration activities; the FDEP's Watershed Restoration Program; the SWFWMD SWIM Plans and Comprehensive Watershed Management Initiative; and the 114,339 acres (46,271 ha) of conservation land in the basin (FNAI 2011b). Four counties occur within the basin (Polk, Hardee, DeSoto and Charlotte). The conservation of the basin's land and water resources is managed by the FWC's Southwest Region, the FDEP's Southwest and South Districts and the SWFWMD.

Withlacoochee River Basin.—

The Withlacoochee River Basin covers an area of 1,320,032 acres (534,198 ha) in West Central Florida. The Withlacoochee River originates in the Green Swamp area near Haines City and flows northwest to the Withlacoochee Bay (FDEP 2005b). The Withlacoochee River Basin has five primary physiographic regions: the Brooksville Ridge, Tsala Plain, Coastal Lowlands, Webster Limestone Plain and the Dade City Hills (FDEP 2005b). The basin hosts a diverse range of natural habitats including Forests, especially Sandhill, Swamps and Dry Prairie (Figure 5O). Generally classified as a Calcareous Stream with Softwater sections, the Withlacoochee River has several spring-fed tributaries. The basin contains numerous springs, including the fourth largest freshwater spring in Florida (tenth largest in the world): Rainbow Springs, which feeds the Rainbow River, Withlacoochee River's largest tributary) (FDEP 2005b). Several lakes important for recreation and native species occur throughout the basin, such as Lake Panasoffkee, Lake Rousseau, Lake Miona and Tsala Apopka Lake. The lower river channel was severely altered in the 1960s for the construction of the now-deactivated Cross-Florida Barge extremely variable, but averages 1,540 cfs (44 m₃/sec) (FDEP 2005b).

Six state listed and one federally listed freshwater obligate SGCN birds (notably the snail kite) occur within the basin. As a result of the high urban development and altered water regimes, the Withlacoochee River is vulnerable to pollution. Several partners have made an effort to improve or conserve the water and land resources in the Withlacoochee River Basin. Examples include the Florida Defenders of the Environment's Withlacoochee Project; the Rainbow Springs Working Group's education and conservation efforts; the FDEP's Watershed Restoration Program; the SWFWMD SWIM Plan; the several NGOs; and the 390,999 acres (158,232 ha) of conservation land in the basin (FNAI 2011b). Eight counties occur within the basin (Marion, Citrus, Sumter, Hernando, Pasco, Polk, Lake and Levy). The conservation of the basin's land and water resources is managed

by the FWC's Northeast, North Central and Southwest Regions, the FDEP's Southwest and Central Districts and the SWFWMD (Fl. FWCC 2012).

Data Collection

A strategy was prepared to best utilize time and resources to ensure as much data as possible was collected on each sub-basin. At the outset of the project, it was determined that priority for data collection was given to the main-stem of each sub-basin. For the given main-stem, float plans were prepared based off of satellite imagery and local knowledge of the river system as available. The float plan determined the upper and lower-most extent that would be surveyed for a given float trip. These extents were based off of the presumed navigability of the river channel, accessibility to boat ramps, and local knowledge based on flow conditions. Deviations from the float-plan did occur while collecting data as the actual river conditions became known and more or less data were collected as a result.

Sonar imagery was collected using a Humminbird 1199ci side imaging system following the snapshot approach developed in Kaeser and Litts (2010). When possible, sonar recordings were collected simultaneously by networking a Humminbird 1199ci with a Humminbird 1198c. Sonar recordings were collected due to the development of new, inexpensive sonar processing software that could drastically reduce processing time and reduce sources of error in collecting imagery. This networking method allowed us to adhere to the original proposed sampling method and also experiment with an alternate method for potential viability in future studies. Problems encountered with the snapshot approach included missed snapshots and rectification errors in processing. The sonar recording approach alleviated these problems and filled in missing information missed by the snapshots. Photographs of features along the banks and of points of interest were also taken during the time of survey using a GPS enabled digital camera, with intentions to load into ArcGIS as a hot linked source of information to aid in habitat interpretation.

Processing

Snapshot imagery was processed using methods developed by Kaeser and Litts (2010), as well as programs developed through python code language. Python language was used to convert navigation points to lines, clean navigation data, and join waypoint and trackline attributes. Snapshot imagery was clipped and rectified using the ArcGIS Visual Basic tools developed by Kaeser and Litts (2010). Sonar recordings were processed using SonarTRX Pro and protocols were developed to optimize image quality and for loading into ArcGIS for viewing and delineation of habitat features. See Appendix F for detailed protocol.

Development of Classification System

A habitat classification scheme was developed using Kaeser and Litts (2010), and modified according to habitat features and forms that we believe possible to distinguish, relevant to species distributions, and to represent different levels of spatial hierarchy. The classification scheme detail and definitions used for mapping is in Appendix B, C, D and E. Due to the large volume of potential substrate classifications, the GIS data are housed in an ESRI file geodatabase which permits the use of subtypes and domains. Each bed composition (Level I) is assigned to the geodatabase as a subtype. As a subtype is selected, each additional attribute (Bed Hardness, Bedform Structure/Texture, Type, and Substrate Cover) is narrowed down according to that selection using domain lists. For example, if the habitat mapper classifies a polygon as "Fines", then the possible values for Bedform Structure/Texture is limited to Plane Bedform or Rippled/Duned Bedform. The use of subtypes and domains dramatically

decreases the time it takes to classify a substrate and also allows the mapper to focus on a single attribute at a time.

The original classification scheme has been adapted to better quantify the habitat encountered once accuracy assessment began. The classification scheme detail and definitions used for mapping, as well as a crosswalk between the original and updated classification schemes can be found in Appendices B, C, and D. Habitat delineation was conducted using a heads-up, manual digitization approach. Bankline boundaries were fist drawn using a combination of the edge of sonar reflectance in sonar imagery and satellite imagery from ESRI's 2015 basemap service.

Digitizing Habitat Features

Sonar imagery was added to ArcGIS Desktop 10.0+. Using the editor toolset and visually inspecting the sonar imagery, lines are drawn to represent the boundaries between two differing substrates according to the classification system. After boundaries are satisfactorily drawn, line features are converted to polygon features and the classification system is applied utilizing domains and subtypes in the ArcGIS geodatabase.

Accuracy Assessment

Once a river system is classified, each classification is summarized to determine the total number of polygons and the total area covered by the substrate. This information is passed on to FWC's statistician to determine a statistically significant number of classified features to be field checked for accuracy. Using this information, points are randomly selected at the centroid of the polygon feature and visited in the field. Actual substrate type will be determined using a drop-camera, ponar grab, diving, and visual inspection where conditions permit (i.e. low water). This assessment will be used to determine the relative accuracy of the substrate map for each river.

PROGRESS

Overview

115 RKM of the Peace River have been scanned/imagery processed, habitat mapped, and assessed for accuracy. 129 RKM of the Withlacoochee River have been scanned/imagery processed, habitat mapped, and assessed for accuracy. 147 RKM of the Lower Choctawhatchee River have been scanned/imagery processed, habitat mapped and have been assessed for accuracy. 196 RKM of the Lower Suwannee River have been scanned/imagery processed, habitat mapped, and assessed for accuracy. 114 RKM of the Lower Ochlockonee River have been scanned/imagery processed and habitat mapped, and assessed for accuracy.

Peace

Data Collection.— A total of three field days were spent on the Peace River in the middle of October 2014. Continuous sonar data (snapshots only) was collected from RKM 117 to RKM 10. RKM 18-10 required a left and right bank pass to ensure bank-to-bank coverage. Data were not collected beyond RKM 10 as the river widens substantially and becomes relatively shallow (approx. 5 ft.) which contributes to lower quality sonar data. Substrate complexity is also greatly reduced at this point, primarily composed of rippled/duned sand. In total, 115 RKM of data were collected. Specific discharge conditions during the survey can be found in Appendix A.

Processing.— All of the sonar data collected on the Peace River has been processed as described by Kaiser & Litts, 2011. Only snapshots were collected as the video network was not in use at this time. The data are stored in mosaic datasets in an ESRI file geodatabase.

Mapping.— The data collected have been reviewed and habitat features have been identified, digitized, and classified according to the project classification. A classification summary by river kilometer can be found in Appendix F. A summary table of the classified substrates follows.

BED COMPOSITION	# OF	TOTAL AREA
LEVEL 1	POLYGONS	COVERED (M2)
FINES	938	3,280,367
ROCKY FINE	77	44,851
ROCKY BOULDER	43	7,298
BEDROCK	279	327,085
FINES MIX	179	372,185
FINES/BEDROCK MIX	74	42,608
TOTAL	1590	4.074.394

SUBSTRATE TYPE	# OF	TOTAL AREA
LEVEL 4	POLYGONS	COVERED (M2)
SILT/MUD/ORGANIC	32	17,156
CLAY	4	6,948
SAND	767	3,140,096
GRAVEL	130	115,515
SAND/SILT/MUD MIX	150	348,243
SAND/HARD CLAY MIX	1	1,479
GRAVEL/SILT/MUD MIX	2	2,021
GRAVEL/SAND MIX	26	20,442
SAND/BEDROCK MIX	42	26,735
GRAVEL/BEDROCK MIX	32	15,873
TOTAL	1186	3,694,508

Accuracy Assessment. — The tabular habitat features were sent to the agency statistician. The data include the substrate bed composition/substrate type, number of polygons, total area covered, and a general confidence level of the mapper. The statistician determined the appropriate number of sample points for each class. The initial accuracy assessment of the Peace River occurred between July 13[,] 2015 and July 16, 2015. Fifty-one kilometers were traversed to assess the accuracy of 157 points. A second trip was conducted between January 4, 2016 and January 8 2016 to assess the accuracy of an additional 98 points. A summary of mapped sonar imagery with accuracy assessed results can be seen in Appendix G. A summary table of the assessed substrate polygons follows.

SUBSTRATE NAME	SUBSTRATE CODE	FREQUENCY TOTAL	FREQUENCY VISITED	PERCENT VISITED
NULL	0	4	4	100.00
SILT/MUD/ORGANIC	1	7	5	71.43
CLAY	2	3	3	100.00
SAND	3	93	67	72.04
GRAVEL	4	31	21	67.74
SAND/SILT/MUD MIX	7	27	19	70.37
SAND/HARD CLAY MIX	8	1	0	0.00
GRAVEL/SILT/MUD MIX	9	2	0	0.00
GRAVEL/SAND MIX	11	11	10	90.91
SAND/BEDROCK MIX	14	8	7	87.50
GRAVEL/BEDROCK MIX	15	6	6	100.00
ROCKY FINE	22	23	20	86.96
ROCKY BOULDER	23	8	7	87.50
BEDROCK	24	33	28	84.85
TOTAL		257	197	76.65

Withlacoochee

Data Collection.— Continuous sonar data were collected from RKM 164 to RKM 35. A total of six field days were spent collecting sonar imagery on the Withlacoochee. The first two field days occurred in the beginning of September 2014 and covered RKM 138-113 and RKM 56-46. Only snapshots were collected for this portion. A second trip in December 2014 covered RKM 164-138, RKM 113-56, and RKM 56-46. Snapshots and video data were collected for these segments Sonar data were not collected above RKM 164 because of questionable navigability due to extensive woody debris in the river and, inability to distinguish hazards due to black water/turbidity, and river depth. Sonar data were not collected below RKM 35 because of extensive vegetation cover contributing to significantly reduced sonar data quality. In total, 129 km of sonar data were collected on the Withlacoochee. Specific discharge conditions during the survey can be found in Appendix A.

Processing.— All of the sonar data (snapshots) collected on the Withlacoochee River have been processed as described by Kaiser & Litts (2011). Where collected, the video data have been processed according to Appendix F. The data are stored in mosaic datasets in an ESRI file geodatabase.

Mapping. — The data collected have been reviewed and habitat features have been identified, digitized, and classified according to the project classification. A classification summary by river kilometer can be found in Appendix F. A summary table of the classified substrates follows.

NEW LEVEL 1 BED COMPOSITION	# OF POLVCONS	TOTAL AREA
BED COMI OSITION	TOLIGONS	COVERED (M2)
1 - FINES	2801	4410508.99
2 – COARSE FINES	757	213186.00
3 – ROCKY BOULDER	529	147786.33
4 – HARD BOTTOM	524	324992.22
TOTAL	4611	5096473.54

NEW LEVEL 4 TYPE	# OF POLYGONS	TOTAL AREA COVERED (M2)
01 - SILT/MUD	174	95322.64
02 - SAND	708	2405250.21
03 - FINES MIX	1627	1822507.33
04 - FINES/ COARSE FINES MIX	292	87428.81
05 - GRAVEL	123	30627.28
09 - ROCKY FINE	634	182558.71
10 - BOULDERS	529	147786.33
06 - HARD CLAY	16	13179.33
07 - HARD CLAY/ FINES MIX	7	5514.42
08 - HARD CLAY/ COARSE FINES MIX	3	1733.85
11 - BEDROCK	391	225148.62
12 - BEDROCK/ FINES MIX	88	67642.98
13 - BEDROCK/ COARSE FINES MIX	19	11773.02
TOTAL	4611	5096473.54

Accuracy Assessment. — The tabular habitat features were sent to the agency statistician. The data include the substrate bed composition/substrate type, number of polygons, total area covered, and a general confidence level of the mapper. The statistician determined the appropriate number of sample points for each class. The initial accuracy assessment of the Withlacoochee River occurred between March 28 2016 and April 1, 2016. Seventy kilometers were traversed to assess the accuracy of 98points. A second trip was conducted between April 12, 2016 and April 15, 2016 to assess the accuracy of an additional 113 points spread over 56 kilometers. A summary of mapped sonar imagery with accuracy assessed results can be seen in Appendix H. A summary table of the assessed substrate polygons follows.

SUBSTRATE NAME	SUBSTRATE CODE	FREQUENCY TOTAL	FREQUENCY VISITED	PERCENT VISITED
NULL	0			
01 - SILT/MUD	1	10	10	100.00
02 - SAND	2	25	26	100.00
03 - FINES MIX	3	54	60	100.00
04 - FINES/ COARSE FINES MIX	4	21	16	76.19
05 - GRAVEL	5	10	9	90.00
06 - HARD CLAY	6	3	3	100.00
07 - HARD CLAY/ FINES MIX	7	3	3	100.00
08 - HARD CLAY/ COARSE FINES MIX	8	2	1	50.00
09 - ROCKY FINE	9	22	23	100.00
10 - BOULDERS	10	19	10	52.63
11 - BEDROCK	11	21	23	100.00
12 - BEDROCK/ FINES MIX	12	6	5	83.33
13 - BEDROCK/ COARSE FINES MIX	13	3	3	100.00
TOTAL		199	192	96.48

Lower Choctawhatchee

Data Collection.— Continuous sonar data were collected from RKM 150 to RKM 0. This extended from the Alabama/Florida border to the Choctawhatchee Bay. A total of five field days were spent of the Choctawhatchee in February 2015. Snapshot and video data were collected for the entire extent of the river. Approximately 9.3 km of Holmes Creek, a tributary in the Lower Choctawhatchee sub-basin, were scanned. At RKM 55, the river has deviated from its historic channel and is now in a new channel and the new channel was scanned. From RKM 45 to RKM 31, two passes were needed to cover the entire channel. In total, 165 km of sonar data were collected on the Choctawhatchee and Holmes Creek. Specific discharge conditions during the survey can be found in Appendix A.

Processing.— All of the sonar data (snapshots) collected on the Choctawhatchee River and Holmes Creek have been processed as described by Kaiser & Litts, 2011. Where collected, the video data have been processed according to Appendix F. The data are stored in mosaic datasets in an ESRI file geodatabase.

Mapping.— The data collected have been reviewed and habitat features have been identified, digitized, and classified according to the project classification. A classification summary by river kilometer can be found in Appendix F. A summary table of the classified substrates follows.

New Level 1 Bed Composition	# of Polygons	Total Area Covered (m2)
1 - Fines	1,669	9,682,485
2 - Coarse Fines	392	293,039
3 - Boulders	137	166,810
4 - Hard Bottom	353	608,136
Total	2,551	10,750,470

New Level 4 Type	# of Polygons	Total Area Covered (m2)
1 - Silt/ Mud	72	51,135
2 - Sand	251	7,420,868
3 - Fines Mix	1,151	1,932,664
4 - Fines/ Coarse Fines Mix	195	277,818
5 - Gravel	108	98,151
9 - Rocky Fine	284	194,888
10 - Boulders	137	166,810
6 - Hard Clay	16	40,368
7 - Hard Clay/ Fines Mix	2	16,627
11 - Bedrock	234	431,325
12 - Bedrock/ Fines Mix	30	79,270
13 - Bedrock/ Coarse Fines Mix	10	16,190
Cultural	61	24,356
Total	2,551	10,750,470

Accuracy Assessment. — The tabular habitat features were sent to the agency statistician. The data include the substrate bed composition/substrate type, number of polygons, total area covered, and a general confidence level of the mapper. The statistician determined the appropriate number of sample points for each class. The initial accuracy assessment of the Choctawhatchee River occurred between September 19, 2016 and September 23, 2016. Seventy kilometers were traversed to assess the accuracy of 98 points. A second trip was conducted between September 27, 2016 and September 29, 2016 to assess the accuracy of an additional 113 points spread over 56 kilometers. A summary of mapped sonar imagery with accuracy assessed results can be seen in Appendix H. A summary of the accuracy assessment procedure with results for each river can be seen in Appendix I. A summary table of the assessed substrate polygons follows.

SUBSTRATE NAME	SUBSTRATE CODE	FREQUENCY TOTAL	FREQUENCY VISITED	PERCENT VISITED
NULL	0			
01 - SILT/MUD	1	11	10	90.91
02 - SAND	2	6	6	100.00
03 - FINES MIX	3	50	52	100.00
04 - FINES/ COARSE FINES MIX	4	26	26	100.00
05 - GRAVEL	5	17	16	94.12
06 - HARD CLAY	6	5	6	100.00
07 - HARD CLAY/ FINES MIX	7	2	2	100.00
08 - HARD CLAY/ COARSE FINES MIX	8	0	0	
09 - ROCKY FINE	9	22	21	95.45
10 - BOULDERS	10	12	13	100.00
11 - BEDROCK	11	17	20	100.00
12 - BEDROCK/ FINES MIX	12	5	5	100.00
13 - BEDROCK/ COARSE FINES MIX	13	3	3	100.00
TOTAL		176	180	

Lower Suwannee

Data Collection.— Continuous sonar data were collected from RKM 205 to RKM 9. A total of eight field days were spent on the Suwannee on three different float trips. The first trip occurred in the middle of September 2014. Sonar data collection support was provided by the U.S. Fish and Wildlife Service and the U.S. Geological Survey. Multiple passes were performed on RKM 116 to RKM 29 to ensure bank-to-bank coverage. Only snapshot data were collected on this trip. A second trip at the end of January 2015 focused on RKM 205 to RKM 116. Two passes were required to ensure bank-to-bank coverage. Snapshot and video sonar data was collected on this trip. A third trip at the beginning of April 2015 focused on RKM 73 to RKM 9. The remaining gaps from the first trip were completed and right and left bank passes were continued from RKM 24 to RKM 9. During this trip, approximately 26 km of the Santa Fe River (tributary) were collected on the Suwannee and Sante Fe rivers. Specific discharge conditions during the survey can be found in Appendix A.

Processing.— All of the sonar data (snapshots) collected on the Suwannee River and Santa Fe River have been processed as described by Kaiser & Litts, 2011. Where collected, the video data have been processed according to Appendix F. The data are stored in mosaic datasets in an ESRI file geodatabase.

Mapping.— The data collected have been reviewed and habitat features have been identified, digitized, and classified according to the project classification. A classification summary by river kilometer can be found in Appendix F. A summary table of the classified substrates follows.

	# of Polygons	Total Area Covered (m2)
1 - Fines	1,272	19,689,761
2 - Coarse Fines	468	654,981
3 - Boulders	519	1,261,373

4 - Hard Botto	663	2,230,638
Total	2,922	New Level 1 Bed Composition

New Level 4 Type	# of Polygons	Total Area Covered (m2)
2 - Sand	809	18,760,772
3 - Fines Mix	457	920,049
4 - Fines/ Coarse Fines Mix	6	8,939
5 - Gravel	208	276,084
9 - Rocky Fine	260	378,897
10 - Boulders	519	1,261,373
6 - Hard Clay	3	10,420
11 - Bedrock	589	2,136,215
12 - Bedrock/ Fines Mix	8	60,436
13 - Bedrock/ Coarse Fines Mix	2	1,286
Cultural	123	29,782
Total	2,984	23,844,253

Accuracy Assessment. — The tabular habitat features were sent to the agency statistician. The data include the substrate bed composition/substrate type, number of polygons, total area covered, and a general confidence level of the mapper. The statistician determined the appropriate number of sample points for each class. The initial accuracy assessment of the Suwannee River occurred between March 7, 2017 and March 10, 2017. Sixty - eight kilometers were traversed to assess the accuracy of 106 points. A second trip was conducted between March 16, 2017 and March 17, 2017to assess the accuracy of an additional 45 points spread over 35 kilometers. A summary of mapped sonar imagery with accuracy assessed results can be seen in Appendix H. A summary table of the assessed substrate polygons follows.

SUBSTRATE NAME	SUBSTRATE CODE	FREQUENCY TOTAL	FREQUENCY VISITED	PERCENT VISITED
NULL	0			
01 - SILT/ MUD	1	0	0	
02 - SAND	2	11	13	100.00
03 - FINES MIX	3	25	27	100.00
04 - FINES/ COARSE FINES MIX	4	2	2	100.00
05 - GRAVEL	5	21	22	100.00
06 - HARD CLAY	6	2	3	100.00
07 - HARD CLAY/ FINES MIX	7	0	0	
08 - HARD CLAY/ COARSE FINES MIX	8	0	0	
09 - ROCKY FINE	9	26	24	92.31
10 - BOULDERS	10	34	36	100.00
11 - BEDROCK	11	48	49	100.00
12 - BEDROCK/ FINES MIX	12	3	3	100.00
13 - BEDROCK/ COARSE FINES MIX	13	2	2	100.00
TOTAL		175	181	

Lower Ochlockonee

Data Collection.— Sonar data were collected on the following stretches: RKM 185-158, RKM 148-134, RKM 107-75, RKM 60-45, and RKM 42-16. All sonar data were collected throughout March 2015. The Ochlockonee has been difficult due to large variations in runoff events as well as the volume of woody debris in the river channel. A total of five field days were spent on the Ochlockonee. Data have been collected on the following stretches: RKM 185-158, RKM 148-134, RKM 107-75, RKM 60-45, and RKM 42-16. The gap from RKM 134 to RKM 107 is Lake Talquin. The gap from RKM 158 to RKM 148 was impassable at the time of the survey due to woody debris in the channel. The gap from RKM 45 to RKM 42 was impassable because the channel closed up and had overhanging trees. Multiple passes will be required at the mouth of the river due to the width of the channel. Snapshot and video sonar data were collected. In total, 114 km of sonar data were collected on the Ochlockonee. Specific discharge conditions during the survey can be found in Appendix A.

Processing.— All of the sonar data (snapshots) collected on the Ochlockonee River have been processed as described by Kaiser & Litts, 2011. Where collected, the video data have been processed according to Appendix F. The data are stored in mosaic datasets in an ESRI file geodatabase.

Mapping.— The data collected have been reviewed and habitat features have been identified, digitized, and classified according to the project classification. A classification summary by river kilometer can be found in Appendix F.

Accuracy Assessment. — The tabular habitat features were sent to the agency statistician. The data include the substrate bed composition/substrate type, number of polygons, total area covered, and a general confidence level of the mapper. The statistician determined the appropriate number of sample points for each class. The initial accuracy assessment of the Ochlockonee River occurred between October 10, 2016 and October 27, 2016. Seventy kilometers were traversed to assess the accuracy of 98points. A second trip was conducted between November 7, 2016 and November 9, 2016 to assess the accuracy of an additional 113 points spread over 56 kilometers. A summary of mapped sonar imagery with accuracy assessed results can be seen in Appendix H. A summary table of the assessed substrate polygons follows.

SUBSTRATE NAME	SUBSTRATE CODE	FREQUENCY TOTAL	FREQUENCY VISITED	PERCENT VISITED
NULL	0			
01 - SILT/MUD	1	3	3	100.00
02 - SAND	2	25	24	96.00
03 - FINES MIX	3	56	61	100.00
04 - FINES/ COARSE FINES	4	2	2	100.00
MIX				
05 - GRAVEL	5	13	13	100.00
09 - ROCKY FINE	9	12	11	91.67
10 - BOULDERS	10	12	7	58.33
06 - HARD CLAY	6	3	3	100.00
07 - HARD CLAY/ FINES MIX	7	3	3	100.00
11 - BEDROCK	11	41	45	100.00
12 - BEDROCK/ FINES MIX	12	5	4	80.00
08 - HARD CLAY/ COARSE	8	0	0	
FINES MIX				
13 - BEDROCK/ COARSE FINES MIX	13	0	0	
TOTAL		175	176	99.43

LITERATURE CITED

- Bitz R.D., P. A. Strickland, T. J. Alfermann, C.R. Middaugh, and J. A. Bock, Black Bass Diversity: Multidisciplinary Science for Conservation Shoal Bass Nesting and Associated Habitat in the Chipola River, Florida. M. D. Tringali, J. M. Long, T. W. Birdsong, and M. S. Allen, editors. American Fisheries Society, March 2015.
- Congalton, R. G. and Green, K. 1999. Assessing the accuracy of remotely sensed data: Principles and Practices. Lewis Publisher, Boca Raton. Fausch, K. D., C. E. Torgersen, C. V. Baxter, and H. W. Li.2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52:483-498.
- Fish, J. P., and H. A. Carr. 1990. Sound underwater images. Lower Cape Publishing, Orleans, Massachusetts. 2001. Sound reflections. Lower Cape Publishing, Orleans, Massachusetts
- Florida Fish and Wildlife Conservation Commission. 2012. Florida's Wildlife Legacy Initiative: Florida's State Wildlife Action Plan. Tallahassee, Florida, USA.
- Georgia Department of Natural Resources, 2010. DNR Researchers Use Low-cost Sonar to Map Stream Habitat [Press release]. Retrieved from http://www.georgiawildlife.com/node/2203
- Goclowski, M. R., A. J. Kaeser, and S. M. Sammons. 2013. Movement and habitat differentiation among adult shoal bass, largemouth bass, and spotted bass in the Upper Flint River, Georgia. North American Journal of Fisheries Management 00:1-15. DOI: 10.1080/02755947.2012.741555
- Kaeser, A. J. and T. L. Litts. 2010. A Novel Technique for Mapping Habitat in Navigable Streams Using Low-cost Side Scan Sonar. Fisheries 35 (4) :163-174.
- Kaeser, A. J. and T. L. Litts. 2011. Sonar Image Geoprocessing Workbook- An illustrated guide to geoprocessing low-cost, side scan sonar imagery obtained with the Humminbird® Side Imaging system. Version 2.1. Georgia Department of Natural Resources, Social Circle, GA. U.S. Fish and Wildlife Service, Panama City Fish and Wildlife Conservation Office, Panama City, Florida.
- Kelly, M. 2004. Florida River Flow Patterns and the Atlantic Multidecadal Oscillation. Southwest Florida Water Management District 2379 Broad Street Brooksville, Florida.
- Lowe, J. W., G. E. Likens, and M. E. Power. 2006. Linking scales in stream ecology. BioScience 56:591-597.
- Newton, R. S., and A. Stefanon. 1975. Application of sidescan sonar in marine biology. Marine Biology 31:287-291.
- Prada, M. C., R. S. Appeldoorn, and J. A. Rivera. 2008. The effects of minimum map unit in coral reefs maps generated from high resolution side scan sonar mosaics. Coral Reefs 27:297-310.
- Sterrett, S. C. 2009. The ecology and influence of land use on river turtles in southwest Georgia. M.S. Thesis. University of Georgia, Athens, GA.
- Weins, John, A. 2002. Riverine landscapes: taking landscape ecology into the water. Freshwater Biology, 47: 501–515.

APPENDICES

A) Survey Summaries

	iu n nuic	nee mir	er burrey bi	intintai y.		
SURVEY DAYS	RKM START	RKM END	RKM DIFFERENCE	LENGTH [KM]	LENGTH [MI]	NOTES
2/9/2015	31	1	30	29.64	18.42	
2/10/2015	150	87	63	62.01	38.53	
2/11/2015	87	44	43	35.90	22.31	New river channel scanned
2/11/2015	0	0	0	9.30	5.78	Holmes Creek Tributary, not main stem
2/12/2015	45	31	14	27.96	17.37	Two passes, left bank and right bank
			TOTAL	165	102	

Lower Choctawhatchee River Survey Summary.-

RKM	143	109	35
STAID	02365200	02365500	02366500
	Discharge	Discharge	Discharge
DATE	[ft3/s]	[ft3/s]	[ft3/s]
1/31/2015	3480	4280	8410
2/1/2015	3180	3860	7560
2/2/2015	3450	3700	6960
2/3/2015	4200	4020	6410
2/4/2015	4130	4380	6050
2/5/2015	4570	4620	6030
2/6/2015	4920	5210	6210
2/7/2015	4440	5460	6470
2/8/2015	3770	4870	6740
2/9/2015	3410	4260	6960
2/10/2015	3250	3920	6950
2/11/2015	3100	3720	6670
2/12/2015	2910	3510	6220
2/13/2015	2780	3320	5800
2/14/2015	2640	3150	5460
2/15/2015	2550	3000	5180
2/16/2015	2450	2880	4890
2/17/2015	2580	2900	4750
2/18/2015	2980	3080	4630
2/19/2015	3130	3410	4570
2/20/2015	3000	3430	4590

Lower Ochlockonee River Survey Summary.—

SURVEY DAYS	RKM START	RKM END	RKM DIFFERENCE	LENGTH [KM]	LENGTH [MI]
3/3/2015	107	75	32	33.42	20.77
3/4/2015	42	16	26	28.82	17.91
3/10/2015	60	45	15	13.52	8.40
3/11/2015	164	158	6	5.58	3.47
3/11/2015	148	134	14	12.09	7.51
3/18/2015	185	164	21	20.29	12.61
			TOTAL	114	71

RKM	186	156	107	63
STAID	02328522	02329000	02330000	02330150
	Discharge	Discharge	Discharge	Discharge
DATE	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]
2/21/2015	1310	1360	2130	2580
2/22/2015	1280	1330	1930	2490
2/23/2015	1220	1290	1920	2350
2/24/2015	1170	1250	1990	2230
2/25/2015	1140	1200	2170	2240
2/26/2015	1420	1350	3510	2930
2/27/2015	1950	1490	4100	3680
2/28/2015	3310	1860	3510	4700
3/1/2015	4730	2560	3330	4570
3/2/2015	5660	3580	3320	4220
3/3/2015	5180	4290	3610	4070
3/4/2015	4270	4030	4500	4060
3/5/2015	3420	3510	5080	4340
3/6/2015	2790	3130	5020	5130
3/7/2015	2320	2760	4880	5350
3/8/2015	2010	2460	4360	5180
3/9/2015	1820	2230	3200	4790
3/10/2015	1670	2030	2780	3970
3/11/2015	1540	1850	2740	3190
3/12/2015	1420	1680	2720	2830
3/13/2015	1320	1530	2510	2680
3/14/2015	1250	1410	2020	2600
3/15/2015	1330	1340	1800	2310
3/16/2015	1610	1340	1830	2000
3/17/2015	1820	1520	1810	1870
3/18/2015	1800	1760	1810	1820
3/19/2015	1660	1810	1990	1780
3/20/2015	1510	1710	2060	1800
3/21/2015	1400	1560	2070	1890
3/22/2015	1280	1450	2970	1930
3/23/2015	1540	1430	3500	2150
3/24/2015	1570	1600	3200	2810
3/25/2015	1490	1630	2990	3070
3/26/2015	1390	1550	2800	2980

Lower Ochlockonee River Survey Summary Continued.—

Peace River Survey Summary.—

SURVEY DAYS	RKM START	RKM END	RKM DIFFERENCE	LENGTH [KM]	LENGTH [MI]	NOTES
10/14/2014	117	77	40	40.84	25.38	
10/15/2014	77	30	47	46.86	29.12	
10/16/2014	18	10	8	27.19	16.89	Two passes, left bank and right bank
			TOTAL	115	71	

RKM STAID	120 02295194	99 02295637	45 02296750	35 02297105
	Discharge	Discharge	Discharge	Discharge
DATE	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]
10/4/2014	1150	2030	4210	4650
10/5/2014	1120	1930	4040	4460
10/6/2014	1090	1800	3790	4170
10/7/2014	1070	1680	3510	3850
10/8/2014	1050	1590	3220	3560
10/9/2014	977	1530	2890	3210
10/10/2014	839	1370	2610	2880
10/11/2014	717	1150	2360	2600
10/12/2014	642	978	2080	2300
10/13/2014	591	857	1750	2000
10/14/2014	534	784	1470	1710
10/15/2014	494	809	1360	1610
10/16/2014	484	740	1340	1580
10/17/2014	493	715	1230	1460
10/18/2014	494	699	1130	1330
10/19/2014	488	684	1060	1240
10/20/2014	469	665	1010	1170
10/21/2014	432	630	976	1130
10/22/2014	376	577	928	1100
10/23/2014	258	488	854	1030
10/24/2014	179	362	752	921

SURVEY DAYS	RKM START	RKM END	RKM DIFFERENCE	LENGTH [KM]	LENGTH [MI]	NOTES
9/18/2014	116	61	55	153.44	95.34	Support from FWS, USGS; left/right bank and middle passes
9/19/2014	65	29	36	70.44	43.77	Support from FWS; right bank and middle passes
1/20/2015	205	158	47	48.16	29.92	Begin middle, switch to right bank at RKM 183
1/21/2015	183	128	55	55.55	34.51	Left bank
1/22/2015	128	123	5	4.95	3.08	Left bank
1/22/2015	159	123	36	36.20	22.49	Right bank
3/31/2015	123	116	7	14.86	9.23	Two passes, left bank and right bank
3/31/2015	0	0	0	25.85	16.06	Tributary, Santa Fe
4/1/2015	73	24	49	49.19	30.57	Begin right bank, switch to left bank at RKM 63
4/1/2015	29	24	5	8.53	5.30	Two passes, right bank and middle
4/2/2015	24	9	15	30.29	18.82	Two passes, left bank and right bank
			TOTAL	497	309	

RKM	205	183	159	123	91	54	12
STAID	02319500	02319800	02320000	02320500	02323000	02323500	02323592
	Discharge						
DATE	[ft3/s]						
9/8/2014	3880	3630	3560	4140	6670	7190	7320
9/9/2014	5200	4700	4490	4760	7430	7840	8320
9/10/2014	5730	5300	5220	5480	8470	8550	8340
9/11/2014	5690	5420	5470	5950	9260	9310	9080
9/12/2014	5580	5400	5500	6190	9730	9800	10500
9/13/2014	5460	5330	5490	6300	9960	9990	9290
9/14/2014	5280	5230	5420	6320	10000	10200	9980
9/15/2014	5090	5090	5310	6270	9940	10300	11200
9/16/2014	4990	5040	5270	6290	9920	10400	11900
9/17/2014	5060	5050	5260	6330	9990	10500	10300
9/18/2014	5220	5140	5330	6280	9830	10300	10600
9/19/2014	5380	5250	5430	6300	9740	10200	10100
9/20/2014	5420	5310	5510	6330	9690	10200	10400
9/21/2014	5300	5260	5450	6330	9620	10100	10400
9/22/2014	5140	5150	5360	6270	9520	10000	9750
9/23/2014	5000	5030	5250	6190	9400	10100	11000
9/24/2014	4870	4920	5130	6080	9200	10100	10400
9/25/2014	4720	4810	5000	5970	9000	9860	9950
9/26/2014	4570	4690	4880	5870	8830	9690	9410
9/27/2014	4400	4550	4750	5790	8730	9520	9190

RKM	205	183	159	123	91	54	12
STAID	02319500	02319800	02320000	02320500	02323000	02323500	02323592
	Discharge						
DATE	[ft3/s]						
1/10/2015	14600	14400	13600	13500	16000	16400	17300
1/11/2015	14400	14200	13500	13400	15900	16300	16300
1/12/2015	14200	14100	13300	13300	15900	16300	16700
1/13/2015	14000	13900	13200	13300	15900	16100	17200
1/14/2015	14000	13800	13100	13200	15800	16000	17300
1/15/2015	13800	13700	13000	13200	15700	16000	16700
1/16/2015	13500	13500	12900	13100	15700	16000	17100
1/17/2015	13100	13200	12600	12900	15600	15900	15900
1/18/2015	12700	12800	12300	12700	15400	15900	16200
1/19/2015	12200	12400	12000	12500	15300	15500	16600
1/20/2015	11800	12100	11600	12300	15000	15300	15600
1/21/2015	11400	11700	11300	12000	14800	15100	15800
1/22/2015	11000	11400	10900	11700	14500	14800	16000
1/23/2015	10800	11100	10700	11500	14400	14300	13200
1/24/2015	11400	11500	10800	11500	14300	14800	17100
1/25/2015	12400	12300	11400	11700	14300	14700	16700
1/26/2015	13000	12800	11900	12100	14500	14800	15900
1/27/2015	13400	13200	12300	12400	14800	15000	15900
1/28/2015	13700	13500	12600	12700	15000	14900	16100
1/29/2015	14000	13800	12900	12900	15300	15200	14800
1/30/2015	14400	14200	13200	13200	15600	15300	16700

Lower Suwannee River Survey Summary.—

RKM	205	183	159	123	91	54	12
STAID	02319500	02319800	02320000	02320500	02323000	02323500	02323592
	Discharge						
DATE	[ft3/s]						
3/21/2015	11300	11700	11800	12900	15900	16200	17200
3/22/2015	10900	11200	11500	12500	15600	15600	16200
3/23/2015	10500	10900	11100	12200	15200	15100	15900
3/24/2015	10400	10700	10900	11900	14900	14900	17200
3/25/2015	10300	10600	10800	11800	14600	14700	16200
3/26/2015	10100	10400	10600	11600	14400	14200	15200
3/27/2015	9880	10100	10400	11500	14300	14100	15300
3/28/2015	9660	9890	10200	11300	14000	14000	16600
3/29/2015	9430	9680	10000	11100	13800	13600	15100
3/30/2015	9200	9440	9820	10900	13600	13400	13600
3/31/2015	8970	9240	9640	10700	13400	13200	14000
4/1/2015	8740	9040	9450	10500	13200	13200	14000
4/2/2015	8450	8820	9240	10300	13000	12700	14200
4/3/2015	8150	8550	9000	10100	12800	12700	13600
4/4/2015	7840	8300	8770	9910	12600	12400	13100
4/5/2015	7510	8050	8530	9700	12400	12200	13600
4/6/2015	7190	7780	8270	9480	12100	11900	12500
4/7/2015	6900	7530	8030	9280	11900	11700	12800
4/8/2015	6580	7300	7770	9010	11600	11600	12100
4/9/2015	6290	7050	7520	8760	11400	11200	12100
4/10/2015	6010	6810	7280	8530	11100	11000	11600

Withlacoochee River Survey Summary.—

DATE	RKM START	RKM END	RKM DIFFERENCE	LENGTH [KM]	LENGTH [MI]
9/4/2014	138	113	25	24.97	15.51
9/5/2014	56	46	10	10.54	6.55
12/8/2014	46	35	11	10.82	6.72
12/9/2014	164	138	26	26.76	16.63
12/10/2014	113	74	39	38.38	23.85
12/11/2014	74	56	18	17.99	11.18
			TOTAL	129	80

RKM	151	138	124	115	102	99	85	80	70	56
STAID	02312000	02312300	02312500	02312558	02312598	02312600	02312720	02312722	02312762	02313000
	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
DATE	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]	[ft3/s]
8/24/2014	441	415	478	590	637	527	741	817	852	1080
8/25/2014	421	392	456	572	623	518	744	816	847	1050
8/26/2014	395	373	433	545	588	497	720	811	839	1030
8/27/2014	369	354	411	521	554	476	693	797	825	1020
8/28/2014	343	332	390	499	522	453	661	776	806	1000
8/29/2014	321	311	369	482	500	444	656	754	787	1010
8/30/2014	302	294	351	473 494 440 658		658	757	791	1070	
8/31/2014	291	281	331	456	471	423	636	756	795	1020
9/1/2014	276	272	317	443	446	402	598	732	780	996
9/2/2014	254	258	307	441	447	402	599	726	766	977
9/3/2014	227	234	288	417	425	384	580	705	746	965
9/4/2014	198	212	268	402	411	377	578	694	731	954
9/5/2014	182	193	256	405	427	388	644	713	750	991
9/6/2014	176	182	237	391	407	377	567	723	769	1020
9/7/2014	174	178	224	381	387	369	564	696	749	991
9/8/2014	175	181	218	375	382	366	565	690	735	967
9/9/2014	173	178	217	368	368	358	561	680	725	957
9/10/2014	172	175	214	358	337	340	543	669	713	936
9/11/2014	172	175	209	342	307	321	533	648	686	909
9/12/2014	171	173	206	331	293	306	524	631	667	879
9/13/2014	168	169	202	322	286	298	522	621	660	864

RKM	151	138	124	115	102	99	85	80	70	56
STAID	02312000	02312300	02312500	02312558	02312598	02312600	02312720	02312722	02312762	02313000
	Discharge									
DATE	[ft3/s]									
11/28/2014	495	461	471	477	415	420	728	770	768	953
11/29/2014	531	505	569	571	506	472	734	784	787	1000
11/30/2014	597	553	629	661	598	526	745	796	799	1030
12/1/2014	695	625	676	743	674	580	756	807	806	1040
12/2/2014	822	726	747	823	752	634	847	835	815	1050
12/3/2014	955	843	860	913	847	694	897	880	850	1050
12/4/2014	1080	961	1010	1000	927	754	909	897	884	1080
12/5/2014	1180	1070	1140	1070	1010	806	928	915	903	1110
12/6/2014	1260	1160	1260	1130	1070	849	954	935	918	1140
12/7/2014	1300	1220	1350	1180	1130	886	980	953	934	1160
12/8/2014	1310	1250	1410	1220	1170	919	1010	970	952	1180
12/9/2014	1310	1270	1460	1240	1210	945	1030	992	970	1190
12/10/2014	1290	1270	1470	1260	1240	970	1050	1010	987	1210
12/11/2014	1250	1240	1470	1260	1270	992	1070	1020	998	1230
12/12/2014	1170	1190	1470	1260	1280	1000	1090	1030	1010	1250
12/13/2014	1110	1120	1440	1250	1290	1010	1110	1040	1020	1280
12/14/2014	1040	1060	1390	1230	1290	1020	1120	1050	1030	1290
12/15/2014	965	986	1330	1200	1280	1010	1140	1060	1040	1310
12/16/2014	900	915	1250	1170	1270	1000	1150	1070	1060	1340
12/17/2014	824	844	1160	1130	1250	991	1160	1080	1070	1360
12/18/2014	767	779	1060	1090	1220	976	1160	1090	1080	1370
12/19/2014	714	723	972	1040	1200	959	1160	1100	1080	1380

Withlacoochee River Survey Summary Continued.—

B) Classification System Schematic

	Bed Composition	н	Bed ardness				Туре	Bedform		Relief		Substrate Cover		
	Dominant	Hard/ Soft		Hard/ Soft			Mixture		Dominant	(Soft Substrates Only)	(]	Hard Substrates Only)		
										-				
				1	Soft Fines - No Mix	1	Silt/Mud	1 Flat 2 Rippled/Duned	0	None				
	1 Fines	1	Soft			2	Sand	1 Flat 2 Rippled/Duned	0	None				
				2	Soft Fines - Mix	3	Fines Mix	1 Flat 2 Rippled/Duned	0	None				
						4	Fines/ Coarse Fines Mix	1 Flat 2 Rippled/Duned	0	None				
Γ				L										
	2 Coarse Fines	2	Hard	3	Coarse Fines - No Mix	5	Gravel	0 None	1 2 3	Flat Low/ Moderate High				
						9	Rocky Fine	0 None	1 2 3	Flat Low/ Moderate High				
	3 Rocky Boulder	2	Hard	6	Rock - No Mix	10	Boulders	0 None	1 2 3	Flat Low/ Moderate High	012	None Submerged Aquatic Veg		
Γ		Π				_					2 3 4	Woody Aggregation - Embedded		
				4	Hard Fines - No Mix	6	Hard Clay	0 None	1 2 3	Flat Low/ Moderate High	5	Vegetated Bank		
				5	Hard Fines - Mix	7	Hard Clay/ Fines Mix	0 None	1 2 3	Flat Low/ Moderate High				
						8	Hard Clay/ Coarse Fines Mix	0 None	1 2 3	Flat Low/ Moderate High				
				h				_						
	4 Hard Bottom	2	Hard	6	Rock - No Mix	11	Bedrock	0 None	1 2 3 4	Flat Low/ Moderate High Wall/ Shelf				
				7	Rock - Mix	12	Bedrock/ Fines Mix	0 None	1 2 3	Flat Low/ Moderate High				
						13	Bedrock/ Coarse Fines Mix	0 None	1 2 3	Flat Low/ Moderate High				
l				h		14	Rip Rap		Τ					
				8	Cultural - Other	15 16	Boat Ramp Other	0 None	0	None				
F	 T	 				17	ŤŤ			 [
	0		NT 4		NT 4	17	Unsure Sonar Shadow	0 21	_	NT 4				
ľ	U NA	U	INA	U	INA	19	No Data	U NA	0	INA				
L				1		20	Island							

C) Classification List

10000000 Fines 11000000 Soft 11100000 Soft Fines - No Mix 11101000 Silt/ Mud 11101100 Flat 11101100 Relief - None 11101100 None 11101101 Submerged AV 11101102 Emergent AV 11101103 WD - Embedded 11101104 WD-Uncovered 11101105 Vegetated Bank 11101200 Rippled/ Duned 11101200 Relief - None 11101200 None 11101201 Submerged AV 11101202 Emergent AV 11101203 WD - Embedded 11101204 WD - Uncovered 11101205 Vegetated Bank 11102000 Sand 11102100 Flat 11102100 Relief - None 11102100 None 11102101 Submerged AV 11102102 Emergent AV 11102103 WD-Embedded 11102104 WD-Uncovered 11102105 Vegetated Bank 11102200 Rippled/ Duned 11102200 Relief - None 11102200 None 11102201 Submerged AV 11102202 Emergent AV 11102203 WD - Embedded 11102204 WD-Uncovered 11102205 Vegetated Bank 11200000 Soft Fines – Mix 11203000 Fines Mix 11203100 Flat 11203100 Relief - None 11203100 None 11203101 Submerged AV 11203102 Emergent AV 11203103 WD - Embedded 11203104 WD-Uncovered 11203105 Vegetated Bank 11203200 Rippled/ Duned 11203200 Relief - None

11203200 None 11203201 Submerged AV 11203202 Emergent AV 11203203 WD - Embedded 11203204 WD - Uncovered 11203205 Vegetated Bank 11204000 Fines/ Coarse Fines Mix 11204100 Flat 11204100 Relief – None 11204100 None 11204101 Submerged AV 11204102 Emergent AV 11204103 WD - Embedded 11204104 WD - Uncovered 11204105 Vegetated Bank 11204200 Rippled/ Duned 11204200 Relief - None 11204200 None 11204201 Submerged AV 11204202 Emergent AV 11204203 WD - Embedded 11204204 WD - Uncovered 11204205 Vegetated Bank 20000000 Coarse Fines 22000000 Hard 22300000 Coarse Fines - No Mix 22305000 Gravel 22305000 Bedform – None 22305010 Flat 22305010 None 22305011 Submerged AV 22305012 Emergent AV 22305013 WD - Embedded 22305014 WD-Uncovered 22305015 Vegetated Bank 22305020 Low/ Moderate 22305020 None 22305021 Submerged AV 22305022 Emergent AV 22305023 WD-Embedded 22305024 WD-Uncovered 22305025 Vegetated Bank 22305030 High 22305030 None 22305031 Submerged AV 22305032 Emergent AV 22305033 WD - Embedded 22305034 WD - Uncovered 22305035 Vegetated Bank 22309000 Rocky Fine 22309000 Bedform - None

22309010 Flat 22309010 None 22309011 Submerged AV 22309012 Emergent AV 22309013 WD - Embedded 22309014 WD-Uncovered 22309015 Vegetated Bank 22309020 Low/ Moderate 22309020 None 22309021 Submerged AV 22309022 Emergent AV 22309023 WD - Embedded 22309024 WD-Uncovered 22309025 Vegetated Bank 22309030 High 22309030 None 22309031 Submerged AV 22309032 Emergent AV 22309033 WD - Embedded 22309034 WD-Uncovered 22309035 Vegetated Bank 30000000 Rocky Boulder 32000000 Hard 32600000 Rock - No Mix 32610000 Rocky Boulder 32610000 Bedform - None 32610010 Flat 32610010 None 32610011 Submerged AV 32610012 Emergent AV 32610013 WD - Embedded 32610014 WD-Uncovered 32610015 Vegetated Bank 32610020 Low/ Moderate 32610020 None 32610021 Submerged AV 32610022 Emergent AV 32610023 WD - Embedded 32610024 WD - Uncovered 32610025 Vegetated Bank 32610030 High 32610030 None 32610031 Submerged AV 32610032 Emergent AV 32610033 WD - Embedded 32610034 WD-Uncovered 32610035 Vegetated Bank 40000000 Hard Bottom 42000000 Hard 42400000 Hard Fines - No Mix 42406000 Hard Clay

42406000 Bedform - None 42406010 Flat 42406010 None 42406011 Submerged AV 42406012 Emergent AV 42406013 WD - Embedded 42406014 WD - Uncovered 42406015 Vegetated Bank 42406020 Low/ Moderate 42406020 None 42406021 Submerged AV 42406022 Emergent AV 42406023 WD - Embedded 42406024 WD - Uncovered 42406025 Vegetated Bank 42406030 High 42406030 None 42406031 Submerged AV 42406032 Emergent AV 42406033 WD - Embedded 42406034 WD - Uncovered 42406035 Vegetated Bank 42500000 Hard Fines - Mix 42507000 Hard Clay/ Fines Mix 42507000 Bedform - None 42507010 Flat 42507010 None 42507011 Submerged AV 42507012 Emergent AV 42507013 WD - Embedded 42507014 WD - Uncovered 42507015 Vegetated Bank 42507020 Low/ Moderate 42507020 None 42507021 Submerged AV 42507022 Emergent AV 42507023 WD - Embedded 42507024 WD - Uncovered 42507025 Vegetated Bank 42507030 High 42507030 None 42507031 Submerged AV 42507032 Emergent AV 42507033 WD - Embedded 42507034 WD - Uncovered 42507035 Vegetated Bank 42508000 Hard Clay/ Coarse Fines Mix 42508000 Bedform - None 42508010 Flat 42508010 None 42508011 Submerged AV

42508012 Emergent AV 42508013 WD - Embedded 42508014 WD - Uncovered 42508015 Vegetated Bank 42508020 Low/ Moderate 42508020 None 42508021 Submerged AV 42508022 Emergent AV 42508023 WD - Embedded 42508024 WD - Uncovered 42508025 Vegetated Bank 42508030 High 42508030 None 42508031 Submerged AV 42508032 Emergent AV 42508033 WD - Embedded 42508034 WD - Uncovered 42508035 Vegetated Bank 42600000 Rock - No Mix 42611000 Bedrock 42611000 Bedform - None 42611010 Flat 42611010 None 42611011 Submerged AV 42611012 Emergent AV 42611013 WD - Embedded 42611014 WD - Uncovered 42611015 Vegetated Bank 42611020 Low/ Moderate 42611020 None 42611021 Submerged AV 42611022 Emergent AV 42611023 WD - Embedded 42611024 WD - Uncovered 42611025 Vegetated Bank 42611030 High 42611030 None 42611031 Submerged AV 42611032 Emergent AV 611033 WD - Embedded 42611034 WD - Uncovered 42611035 Vegetated Bank 42611040 Wall/ Shelf 42611040 None 42611041 Submerged AV 42611042 Emergent AV 42611043 WD - Embedded 42611044 WD – Uncovered 42611045 Vegetated Bank 42700000 Rock - Mix

42712000 Bedrock/ Fines Mix
42712000 Bedform - None 42712010 Flat 42712010 None 42712011 Submerged AV 42712012 Emergent AV 42712013 WD - Embedded 42712014 WD - Uncovered 42712015 Vegetated Bank 42712020 Low/ Moderate 42712020 None 42712021 Submerged AV 42712022 Emergent AV 42712023 WD - Embedded 42712024 WD - Uncovered 42712025 Vegetated Bank 42712030 High 42712030 None 42712031 Submerged AV 42712032 Emergent AV 42712033 WD - Embedded 42712034 WD - Uncovered 42712035 Vegetated Bank 42713000 Bedrock/ Coarse Fines Mix 42713000 Bedform - None 42713010 Flat 42713010 None 42713011 Submerged AV 42713012 Emergent AV 42713013 WD - Embedded 42713014 WD - Uncovered 42713015 Vegetated Bank 42713020 Low/ Moderate 42713020 None 42713021 Submerged AV 42713022 Emergent AV 42713023 WD - Embedded 42713024 WD - Uncovered 42713025 Vegetated Bank 42713030 High 42713030 None 42713031 Submerged AV 42713032 Emergent AV 42713033 WD - Embedded 42713034 WD - Uncovered 42713035 Vegetated Bank 42800000 Cultural – Other 42814000 Rip Rap 42815000 Boat Ramp 42816000 Other

00017000 Unsure 00018000 Sonar Shadow 00019000 No Data 00020000 Island

D) Classification Definitions

- **Bankline:** The bankline is digitized using visual interpretation of the channel ridge and the inner edge (towards center of channel) of terrestrial/riparian vegetation (trees, willows, etc.). Source data includes side scan sonar and aerial imagery.
- **MMU**: Minimum mapping unit. The minimum area for features in a river to be mapped as polygons is 28 m^2 or a circle with a 3 m radius. Unless otherwise stated, $\geq 75\%$ of the MMU must be covered by the classified substrate.

Bed Composition:

- **Fines**: Area composed of particles < 64 mm diameter. Types of fines include silt, mud, organics, clay, and sand.
- **Coarse Fines**: ≥ 25% of the MMU composed of rocks and gravel >4mm but <500mm diameter across the longest axis.
- **Rocky Boulder**: Area that includes three or more boulders, each \geq 500 mm diameter across longest axis, each boulder within 1.5 m of the next adjacent boulder.

Hard Bottom: Substrates composed of solid rock or compacted clay.

Bed Hardness:

- **Soft**: Areas composed of loosely bound substrates such as sand and silt which can be easily moved by foot. Unconsolidated substrates are expected to have higher mobility then consolidated substrates. These areas result in plane (smooth), rippled, or duned bedforms.
- **Hard**: Areas composed of hard substrates consisting of gravel, rock (including boulders and bedrock) as well as compacted clay. Hard substrates are expected to have lower mobility then unconsolidated substrates. These areas result in flat, low/moderate, or high relief beds.

Type:

- **Silt/Mud**: Type of bed composed of the finest particle sizes. Sonar signature is typically dark image tone, flat texture, and located in depositional zones of the river channel
- Sand: Type of bed composed of sand particles. Sonar signature is bright image tone and ripple/dune or flat texture.
- **Fines Mix**: Type of bed composition that contains combinations of sand and silt substrates where no single substrate is readily identifiable.
- **Coarse Fines Mix**: Type of bed composition that contains combinations of gravel, sand and silt substrates where no single substrate is readily identifiable.
- **Gravel**: Type of bed composed of particle sizes 4mm 64mm with a sonar signature containing a bright image tone, flat texture, and located in areas of the channel that could contain moderate deposition of heavier particles.
- **Rocky Fine:** ≥ 25% of the MMU composed of rocks >64mm but <500mm diameter across the longest axis.

- **Rocky Boulder**: Area that includes three or more boulders, each \geq 500 mm diameter across longest axis, each boulder within 1.5 m of the next adjacent boulder.
- **Hard Clay**: Type of bed composed of compact clay particles. Sonar signature is darker image tone, flat texture, and located in less depositional areas.
- Hard Clay/ Fines Mix: Type of bed composition that contains combinations of sand/silt and hard clay substrates.
- **Hard Clay/ Coarse Fines Mix**: Type of bed composition that contains combinations of gravel/rocky fine and hard clay substrates.
- Bedrock: Substrate composed of solid rock.
- **Bedrock/ Fines Mixture**: Type of bed composition that contains combinations of sand/silt and bedrock substrates.
- **Bedrock/ Coarse Fines Mix**: Type of bed composition that contains combinations of gravel and bedrock substrates.
- **Rip Rap**: Type of unnatural/cultural bed composition that includes rock and concrete put in place by people for bank stability.
- **Boat Ramp**: Type of unnatural/cultural bed composition that is a submerged slab of concrete used to launch watercraft from the bank.
- Other (Cultural): Any other feature not natural and placed in the river by people.
- **Unsure**: Area difficult to classify due to reduced image resolution.
- **Sonar Shadow**: Area within sonar range that was not imaged because the sonar signal was blocked by object(s).
- No Data: An area beyond sonar range but within the boundaries of the river channel.

Bedform Structure or Relief:

- **Plane Bedform**: A soft substrate with a smooth surface resulting in little to no sonar shadow. Plane bedforms can only be composed of fines.
- **Rippled/Duned**: A soft substrate with an undulating/mounded surface which causes sonar shadows to exist on the far side of the feature. Rippled/Duned bedforms can only be composed of fines.
- **Flat Relief**: A hard substrate with a smooth surface resulting in little to no sonar shadow. Low relief bedforms are composed of gravel beds, smooth bedrock, or hard clay.
- **Low/Moderate Relief**: A hard substrate with a moderately rough surface resulting in some sonar shadows on the surface. Low/Moderate relief bedforms are composed of rocky fine, small rocky boulder, and coarse textured bedrock.
- **High Relief**: A hard substrate with a rough surface resulting in wide range sonar shadows on the surface. Coarse textured bedforms are composed of large rocky boulders and very coarse textured bedrock.
- **Wall/Shelf**: A hard substrate composed of bedrock shelf that can return a very hard signal from the banks or cast a very large shadow on a bedrock surface from large variations in elevation. These include overhanging bedrock where identifiable.

Substrate Cover:

- **Submerged Aquatic Vegetation**: Types of aquatic vegetation that remains submerged as part of the vegetation's life cycle.
- **Emergent Aquatic Vegetation**: Types of aquatic vegetation that emerges from the surface of the water as part of the vegetation's life cycle.
- Wood Aggregation Embedded: Aggregations of wood that are partially buried in the bed.
- Wood Aggregation Uncovered: Aggregations of wood that are exposed and resting on the bed.
- **Vegetated Bank:** River bank that is inundated during high flow events which is covered in a mixture of riparian and terrestrial vegetation.

	_	_	_	_	_	_	_			_		_				_	_		
	New Level 4	Type	01 Sil+/A4.14	nnw/hile - To	02 - Sand	05 - Gravel	09 - Rocky Fine	10 - Boulders	11 Bodrook		03 - Fines Mix	07 - Hard Clay/ Fines Mix	04 Einor/Contro Einor Miv		08 - Hard Clay/ Coarse Fines Mix	13 Bodroch / Einer Mix		13 - Bedrock/ Coarse Fines Mix	Accuracy Assesment Level
New Classification	New Level 3	Mixture	01 Finan No Miv		01 - Fines - No Mix	03 - Coarse Fines - No Mix	03 - Coarse Fines - No Mix	06 - Rock - No Mix	ne poch No Miv		02 - Fines - Mix	05 - Hard Fines - Mix	no Einer Mix		05 - Hard Fines - Mix	n7 Dock Miv		07 - Rock - Mix	
	New Level 2	Bed_Hardness	Coff Liner		Soft Fines	Hard Fines	Hard Fines	Hard Rock	Hard Dock		Soft Fines	Hard Fines	Soft Einor		Hard Fines	Uard Dack		Hard Rock	
	New Level 1	Bed_Composition	1 Finar		1 - Fines	2 - Coarse Fines	2 - Coarse Fines	3 - Rocky Boulder	A Hard Bottom		1 - Fines	4 - Hard Bottom	1 Einoc		4 - Hard Bottom	A Hard Bottom		4 - Hard Bottom	Accuracy Assesment Level
	Old Level 4	Substrate Type Level 4	1 - Silt/Mud/Organic	2 - Clay	3 - Sand	4 - Gravel	22 - Rocky Fine	23 - Rocky Boulder	24 - Bedrock	25 - Bedrock Shelf	7 - Sand/Silt/Mud Mix	8 - Sand/Hard Clay Mix	9 - Gravel/Silt/Mud Mix	11 - Gravel/Sand Mix	10 - Gravel/Hard Clay Mix	14 - Sand/Bedrock Mix	13 - Clay/Bedrock Mix	15 - Gravel/Bedrock Mix	Accuracy Assesment Level
l Classification	Old Level 3	Bedform Structure/Texture		Plane or Disaled (Durad	רומוש או		Coarse	Coarse	Cmooth or Coarco							s/Bedrock Mix Mixed 31 - Clay/Bedrock Mix Mixed 57 - Rock - Mix Mixed 57 - Rock - Mix			
0	Old Level 2	Bed Hardness	Unconsolidated	Unconsolidated	Unconsolidated	Unconsolidated	Consolidated	Consolidated	Consolidated	Consolidated	Mixed	Mixed	Mixed	Mixed	Mixed	Mixed	Mixed	Mixed	
	Old Level 1	d Composition Level 1	Fines	Fines	Fines	Fines	Rocky Fine	Rocky Boulder	Bedrock	Bedrock Shelf	Fines Mix	Fines Mix	Fines Mix	Fines Mix	Fines Mix	Fines/Bedrock Mix	Fines/Bedrock Mix	Fines/Bedrock Mix	curacy Assesment Level

E)

F) SonarTRX X64 Pro Procedure

1 Import	Batch process	2 View and edit	3 Create mosaic	4 Publish	Help	
r. import	Datempiocess	2. VIEW drid Cuit	J. Greate mosaic	4. TODIST	Tielp	

Download the recording files from the "RECORD" folder on the SD card of the sonar unit. The .DAT file, along with the associated folder with the same name are necessary to the TRX processing. For example, the "0001.DAT" file as well as the folder "0001" in the "RECORD" folder on the SD card should be downloaded.

Import Recording File

- Click the "Import" button
 - Navigate to the location of the recording file to be processed.
 - This is the .DAT file
 - Inspect the date and duration of the recording to be sure it makes sense with the target area. The following example shows a recording that is about 54 minutes long, and collected on 3/31/2015. There is no limit to the duration of recording that can processed, but be aware of computer limitations.

SonarTRX - Data import				X
Input file:	hd data/Sumanna	e\field eaper date\Sum		Browse
		e viela_sonal_data (suw		I
The duration of this recording	Options	9 Max Est Ping Cou	int: 45589	1
Available Channels: 4	13. 00.04.04.07	o, max Eat. Thing cou	AR. 15505	
Import file. Time [Local]:	3/31/2015 10:3	32:11 AM -> 3/31/20	15 11:26:15 AM	ı
Import clip / time range:				-
Start time [Local]:	:11 AM	Create new clip file	Edit XML	Reload
End time [Local]: 11:26	:15 AM	Clip Manag	er	Delete
New dip fidme.			_	Append
The recording contains sonar	channel: 0,1,2,	3		
Import channel 0 (DownScan)		Import channel 1 (Downs	Scan)	
Import channel 2 (SideScanLe	eft) 🔽	Import channel 3 (SideSo	an Right)	
Other options				
Position options: Default Hummi	nbird Nav.Source	~ ((GPS/Sensor/U	SBL etc.)
Interpolate positions for interm	ediate pings.			
Interpolate across points	with zero Latitude /	/ Longitude		
Recalculate distance alor	ng track			
Interpolate sensor altitude for	intermediate pings			
Slant Range Correction option	s (Only applical	ble if altitude is avail	able)	
Calculate Beam Angle Correct	ion statistics			
Generate Slant Range Correct	ted data (No corre	ctions are used)		
Create options file Explore		Start Proc	essing	Cancel

- <u>Clipping</u> (OPTIONAL): A portion of the recording may be processed using the clip functions if the time period of the targeted imagery is known (this can also be done more easily later in the "View/Edit step").
 - Select the "Import clip / time range" bubble
 - Click "Create new clip file"
 - A default list of predefined clips will be displayed, these can be useful for very large files
 - To create a custom clip range:
 - Change the Start and End time values

- Enter a clip name
 - Click "Append"
- The new clip will be added to the drop down list and can be selected manually
- The program's defaults for everything else in this window are usually acceptable. You will want to import all channels available, and you can calculate slant range correction later in the View window, which I think is easier.
- Click "Start Processing"
- Processing time will depend on the file size and computer processing power computer

View and Adjust Imagery

The View and edit window

- Slant range correction calculations and adjustments to the imagery are made in the View and edit window, as well as exporting track points and depth data.

- In order to view the imagery, go to the "View" tab in the View window.
 - Click the "Restore" button

SonarTRX - Data view and edit [\\FWC-SPGS1\Projects\side	_scan\field_data	Suwannee\field.	\R00020.0	DAT]					
lav. Corrections Altitude SRC /TVG Export View	Channel: Ch.2	2 - SideScanLeft	 View: 	Original (w	ith water column)	•	Display altitude:	SensorAltitude	
Layout: All Horizontal Vertical	Color Scheme:	Blue-Turquoise	• k	nline stretch:	1	•	Range limit: N	lo limit 👻 m	Auto refr
Show gridlines. Spacing: 10 - m									
Highlight altitude pixels:									
Sensor Hirst Echo Ship Echo									
Auto adjust images (Maximize contrast) Auto adjust all									
Gain parameter (K1): 1024 (Saved: 0)									
Contrast parameter (K0): 0.000 (Saved: 0.000)									
-									
Reset Save Restore > XML All Ch.									
Histograms - Original and Corrected									
Ping intensity value (0-255):									
Application defaults:									
Save settings Restore settings Reset									
Zoom: 0.0 - 44.1 m (100%)	•								
200m: 0.0 - 44.1 m (100%)									

- Check the "Auto adjust images (Maximize contrast)" box
 - Although the imagery should look good at this point, unchecking the Auto adjust images box enables adjustments to be made using the sliders. However, the sliders can be difficult to manipulate with mouse and arrow keys and personal experience has shown that Auto adjust gives the best balance for the Original (with water column) imagery.

- You can scroll through the recording with the scroll bar below the image window
- If the imagery looks acceptable at this point, it is acceptable to skip directly to the "<u>Exporting</u> <u>Imagery</u>" step. However, performing additional manipulations can remove the water column and improve the image in general.

45

General review of imagery

• Go to the Nav. tab

- The Nav. tab allows you to view the imagery of the entire recording, and displays the path of the survey vessel (Track Window). The dark shaded part of the track is the part of the recording visible in the window, and the lighter shaded part is the part of the track viewable with the scroll bars. Click the Window Advance buttons to advance down the track and view other parts of the recording.
- Use the "Channel:" dropdown menu to select which side of the sonar to view (Left or Right)
- Change the "Inline Stretch" dropdown menu to "Speed Corrected" to get a more realistic view of the size of features in the imagery

Slant Range Correction (SRC)

- Click the "SRC/TVG" tab in the Data view and edit window

- "Altitude source (SRC):" Sensor Altitude
 - Check the "Adjust altitude by:" box
 - "Beam Angle Correction (BAC)"
 - Select the "Automatic"
- Accept all other defaults
- Click the "Start Processing" button

- After the process is completed, in order to see the SRC images: In the "View:" dropdown menu (upper right), select "Slant Range Corrected"

- SonarTRX does some additional processing by using the embedded depth data (Sensor Altitude) to even out pixels values across the entire range of coverage, resulting in bright image tones all the way to the edge.
 - However, this processing uses the average depth collected across the entire recording to adjust the pixel values, causing the shallowest portions of the recording to be very light, and the deepest parts to be quite dark. If depths do not vary dramatically through the recording (a scanned a lake or offshore for instance), then the SRC image will be flat. But, if the recording is taken in a riverine setting, there will likely be dramatic changes in depths as the boat passes over riffles, pools, bars, and protruding woody debris.
 - Even with dramatic changes in depth, the quality of the SRC imagery is acceptable.

First Echo Return processing (imagery with the water column)

The original (with water column) imagery can be difficult to adjust properly, and adjustments are limited to the Auto adjust contrast and slider manipulations in the View tab. By processing the first echo return functions in SonarTRX, the parameter manipulations can be used with the water column preserved in the imagery, and dramatic depth variations do not affect the pixel values as in the SRC corrections.

- Go to the Altitude tab.
 - o Click the "Start Processing" button

- Go back to the "SRC/TVG" tab
 - Change the "Altitude source (SRC):" dropdown menu to "FirstEchoReturn"
 - UN-check the "Adjust altitude by:" box
 - Click the "Start Processing" button
 - Once processing finishes, change the "View:" dropdown menu to "Slant Range Corrected"

Additional data correction parameters (image adjustments)

- Because the SRC imagery often does not require additional adjustments, the following examples use the FirstEchoReturn imagery, where the parameter adjustments make the most difference.

- Each recording is different and will need different levels of adjustment
- The only parameters adjusted during this project are the "Gain (K1)" and the "Log(R) factor (K3)"
 - \circ Gain (K1) = increases contrast
 - Lower values increase contrast
 - Upper values decrease contrast
 - Start with negative values and increase or decrease depending on how the imagery is affected
 - \circ Log(R) factor (K3)
 - This is a fine tune parameter, which appears to reduce shallow water washout. Generally ranges from 0-50, too high or low and the imagery will go all white or black, respectively.

- Click the "Start Processing" button after each change in parameter values to apply the changes

Example image corrections

- In our experience, Gain (K1) = -150 and log(R) = 25 are good starting places

Exporting Imagery

- The folder created will contain the "image tiles" (in the folder named "files"), and a .kml file that can be opened in Google Earth.

- Navigate to the folder you just exported the imagery to, open the "files" folder, and DELETE the "Logo" image file.

F) Classification Summary

G) Peace River Accuracy Assessment Summary

Field Notes

Mapped Classification LVL I: 01 - Fines LVL IV: 03 - Sand

Field Classification LVL I: 01 - Fines LVL IV: 03 - Sand

RKM: 61 Polygon Area: 278.881407 m2

> Lat: 27.302488 Lon: -81.846142

Sampled At: 2015-07-16 08:50:37 EDT

Field Notes

<u>Mapped Classification</u> LVL I: 01 - Fines LVL IV: 04 - Gravel

<u>Field Classification</u> LVL I: 01 - Fines LVL IV: 04 - Gravel

RKM: 100 Polygon Area: 414.08778 m2

> Lat: 27.509088 Lon: -81.796373

Sampled At: 2015-07-15 10:26:26 EDT

Field Notes

Gravel and rocky fine mix

Mapped Classification LVL I: 02 - Rocky Fine LVL IV: 22 - Rocky Fine

Field Classification LVL I: 02 - Rocky Fine LVL IV: 22 - Rocky Fine

RKM: 100 Polygon Area: 272.983087 m2

> Lat: 27.506816 Lon: -81.796533

Sampled At: 2015-07-15 10:07:23 EDT

Sample OID: 752

Mapped Classification LVL I: 02 - Rocky Fine LVL IV: 22 - Rocky Fine

Field Classification LVL I: 02 - Rocky Fine LVL IV: 22 - Rocky Fine

RKM: 101 Polygon Area: 1640.596417 m2

> Lat: 27.512391 Lon: -81.793145

Sampled At: 2015-07-15 10:51:44 EDT

Field Notes

Mapped Classification LVL I: 02 - Rocky Fine LVL IV: 22 - Rocky Fine

Field Classification LVL I: 03 - Rocky Boulder LVL IV: 23 - Rocky Boulder

RKM: 38 Polygon Area: 137.375984 m2

> Lat: 27.176064 Lon: -81.887005

Sampled At: 2016-01-07 14:32:58 EST

Field Notes

Largely rocky fine, but has boulders. Boulders composed of very hard sand.

Field Notes

Mapped Classification LVL I: 03 - Rocky Boulder LVL IV: 23 - Rocky Boulder

Field Classification LVL I: 03 - Rocky Boulder LVL IV: 23 - Rocky Boulder

RKM: 73 Polygon Area: 75.264745 m2

> Lat: 27.382727 Lon: -81.843274

Sampled At: 2015-07-16 11:51:11 EDT

Notes

Sample OID: 711

Mapped Classification LVL I: 01 - Fines LVL IV: 01 - Silt/Mud

<u>Field Classification</u> LVL I: 01 - Fines LVL IV: 01 - Silt/Mud

RKM: 45 Polygon Area: 399.529107348 m2

> Lat: 29.0155 Lon: -82.420252

Sampled At: 2016-04-12 13:54:26 EDT

Mapped Classification

LVL I: 01 - Fines LVL IV: 02 - Sand

Field Classification

LVL I: 01 - Fines LVL IV: 01 - Silt/Mud

RKM: 101 Polygon Area: 75345.717974 m2

> Lat: 28.733714 Lon: -82.233769

Sampled At: 2016-04-04 10:30:31 EDT

Mapped Classification

LVL I: 01 - Fines LVL IV: 02 - Sand

Field Classification LVL I: 02 - Coarse Fines LVL IV: 09 - Rocky Fine

RKM: 46 Polygon Area: 428.14575884 m2

> Lat: 29.016199 Lon: -82.409287

Sampled At: 2016-04-12 12:34:25 EDT

<u>Notes</u> Lots of leaves over sand

Mapped Classification

LVL I: 01 - Fines LVL IV: 02 - Sand

Field Classification LVL I: 01 - Fines LVL IV: 02 - Sand

RKM: 67 Polygon Area: 632.773649426 m2

> Lat: 28.931868 Lon: -82.288558

Sampled At: 2016-04-13 10:51:47 EDT

 \underline{Notes} Two distinct boulder patches on bank, scattered rf

Mapped Classification

LVL I: 04 - Hard Bottom LVL IV: 12 - Bedrock/ Fines Mix

> Field Classification LVL I: 04 - Hard Bottom LVL IV: 11 - Bedrock

RKM: 58 Polygon Area: 1049.68644082 m2

> Lat: 28.981372 Lon: -82.334022

Sampled At: 2016-04-13 14:32:37 EDT Sample OID: 5099

Mapped Classification LVL I: 04 - Hard Bottom LVL IV: 11 - Bedrock

Field Classification LVL I: 04 - Hard Bottom LVL IV: 11 - Bedrock

RKM: 56 Polygon Area: 886.093385939 m2

> Lat: 28.991466 Lon: -82.352827

Sampled At: 2016-04-13 15:15:37 EDT

<u>Notes</u> Shelf. Bumpy.

<u>Notes</u> Br surrounded, small amount of fines

Mapped Classification LVL I: 04 - Hard Bottom

LVL IV: 11 - Bedrock

Field Classification LVL I: 03 - Rocky Boulder LVL IV: 10 - Boulders

RKM: 52 Polygon Area: 120.508140402 m2

> Lat: 29.004926 Lon: -82.378156

Sampled At: 2016-04-12 09:34:30 EDT